AVR 00136

Screening for new compounds with antiherpes activity*

Balbino Alarcón¹, Juan Carlos Lacal¹, José María Fernández-Sousa² and Luis Carrasco¹

¹Departamento de Microbiología, Centro de Biología Molecular, Universidad Autónoma, Canto Blanco, Madrid-34 and ²Antibióticos S.A., c/ Bravo Murillo, 38, Madrid-3, Spain

(Received 23 November 1983; accepted 15 February 1984)

Summary

A number of compounds have been tested for antiherpes activity. Actinobolin, amicetin, carrageenan, laspartomycin, megalomycin C, pleuromutilin, suramin and tetracenomycin C showed significant protection of HeLa cell monolayers infected with herpes simplex virus type 1. The action of these new antiherpes compounds was compared with those antiherpes agents that have been described previously. Actinobolin, amicetin and tetracenomycin C were also active against viruses other than herpes simplex.

herpesvirus; antiviral compounds; antibiotics; viral inhibitors

Introduction

The development of new compounds with antiviral activity in the last few years has given rise to the so-called second generation of antiviral compounds [5,6]. In addition to a high antiviral potency, some of these new agents show little, if any, toxicity. Thus, acycloguanosine and bromovinyldeoxyuridine (BVdUrd) are among the antiherpes drugs with the highest activity to toxicity ratio [2,7]. Ribavirin is another promising, broad-spectrum antiviral agent with little toxicity for experimental animals [11]. The need for a continuing search of antiviral agents is evident considering the fact that herpes simplex type 1 (HSV-1) mutants might arise during acycloguanosine treatment [4,8,13]. Also the search for a compound with a wider antiviral spectrum should be pursued.

In an attempt to identify new compounds with antiherpes activity we have tested a

^{*} Presented at the International Symposium on Antiviral Compounds, Universitäts-Augenklinik Eppendorf, Hamburg, F.R.G., June 13-16, 1983.

number of natural and synthetic compounds, including antibiotics with a yet unknown mode of action [12,15]. The activity of previously described antiviral compounds is given for comparative purposes.

Materials and Methods

Cells and viruses

HeLa cells were grown in Dulbecco's modified Eagle's medium (DMEM; Gibco) supplemented with 10% newborn calf serum (Gibco). HSV-1 (KOS) was grown in Vero cells and titered by the standard plaque assay method in Vero cells.

Measurement of protein synthesis

0.5 ml of methionine-free medium and 0.11 µCi of [35S] methionine (The Radiochemical Centre, Amersham, 1100 Ci/mmol) were added to the cells for 1 h. The medium was then removed, and the cells were washed with PBS solution and precipitated with 5% trichloroacetic acid. After 5 min, the trichloroacetic acid was removed and the cell monolayer washed 3 times with ethanol, dried under an infrared lamp and dissolved with 250 µl 0.1 N NaOH plus 1% SDS. 125 µl were counted in an Intertechnique scintillation spectrometer.

Estimation of the cytopathic effect

HeLa cell monolayers were infected with HSV-1 (KOS) at 0.2-0.5 plaque-forming units (PFU) cell, in the presence of the indicated concentrations of the compound. After 48 h, the cytopathic effect was examined under a phase-contrast microscope.

Results and Discussion

Systems to evaluate the antiviral effects of compounds

Several systems have been developed to assay antiviral activity [10]. These systems make use of whole animals, explanted organs or tissues, culture cells, cell-free systems and even purified enzymes [3,9]. The most obvious approach in the search for new antiviral agents starts with their analysis in cultured cells, followed by a further exploration of their efficacy in experimental animals, their activity spectrum and mechanism of action.

We have used a cell culture system to detect new antiherpes compounds. The system is based on the infection of HeLa cell monolayers with HSV-1 at a low multiplicity of infection (0.2–0.5 PFU/cell). The test compound was added together with the virus and after 48 h of incubation the cytopathic effect was recorded upon examination with a phase-contrast microscope. The protein-synthesizing capacity of the cell monolayer was estimated by using a short pulse of [35S]methionine as indicated in Materials and Methods.

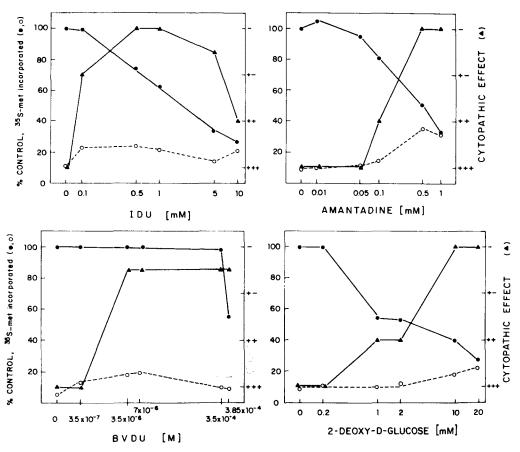


Fig. 1. Cytopathic effect (CPE) in HSV-1-infected HeLa cells, 48 h p.i. (\triangle). -, +-, ++, +++ represent CPE on a progressive scale, varying from no CPE (-) to maximum CPE (+++). Protein synthesis was measured as indicated in Materials and Methods, in HSV-1-infected cells (\circ) and uninfected control cells (\bullet). BVDU, (E)-5-(2-Bromovinyl)-2'-deoxyuridine (bromovinyldeoxyuridine); IDU, 5-iodo-2'-deoxyuridine (idoxuridine).

Effect of known antiviral agents

For comparative purposes we first analyzed the protective effects of several known antiviral agents on HeLa cells infected with HSV-1. These included iododeoxyuridine (IDU), amantadine, bromovinyldeoxyuridine (BVDU), 2-deoxy-D-glucose, glycyrrhizic acid, phosphonoformate, ribavirin, 5-trifluoromethyl-2'-deoxyuridine, acycloguanosine and vidarabine. The results are shown in Figs. 1 and 2. Some of these compounds showed a deleterious effect on uninfected control cells at the same concentrations that exhibited an antiviral effect. Thus, amantadine, 2-deoxy-D-glucose and vidarabine blocked translation in uninfected control cells at concentrations that protected the cell monolayer against HSV-1 infection. However, other compounds inhibited viral cytopathogenicity at concentrations which were not inhibitory to protein synthesis in uninfected cells. Table 1 presents the concentrations of these

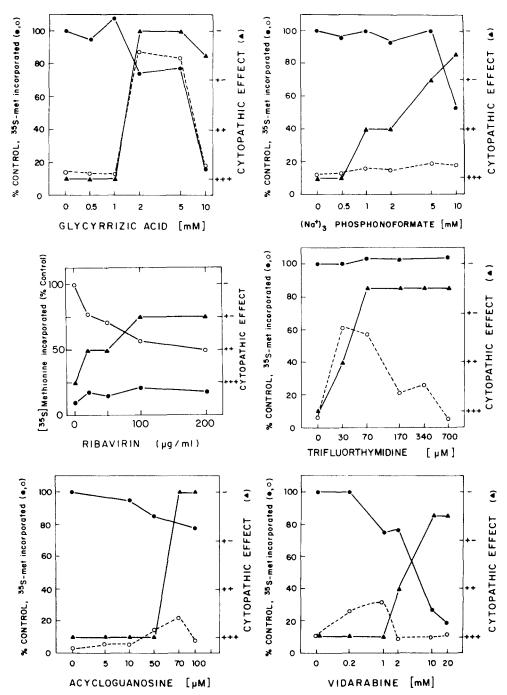


Fig. 2. Cytopathic effect in HSV-1-infected HeLa cells, 48 h p.i. Viral CPE and protein synthesis were determined as indicated in the legend to Fig. 1.

TABLE 1			
Reference compounds	with	antiherpetic	activity

Name	TOX 50 (mM)	CPE 50 (mM)				
Acycloguanosine	10	0.06				
Amantadine	0.5	0.2				
BVdUrd	0.4	0.001				
Cytarabine	20	5				
2-Deoxy-D-glucose	5	5				
Glycyrrhizic acid	8	1.5				
IDU	5	5				
Phosphonoformate	10	4				
Ribavirin	0.8	0.3				
Trifluorothymidine	0.7	0.05				
Vidarabine	5	5				

TOX 50, Concentration of the compound that caused a 50% inhibition of protein synthesis in uninfected HeLa cells after 48 h incubation.

CPE 50, Concentration of the compound that conferred a 50% protection of the cytopathic effect induced by HSV-1 infection after 48 h incubation.

compounds that conferred a 50% protection of the cytopathic effect, as well as the concentration that caused a 50% inhibition of protein synthesis in uninfected control cells. BVdUrd and acycloguanosine had the highest selectivity index. BVdUrd showed activity at 0.001 mM and acycloguanosine was active at a 60-fold higher concentration.

Screening of new compounds with antiherpes activity

In an attempt to find new compounds with antiherpes activity we analyzed a number of natural substances for their protective effect of HeLa cell monolayers against HSV-1 infection. The toxic effects for uninfected control HeLa cells were also recorded. The compounds that did not exhibit protection and the concentration at which they were tested are listed in Table 2. Some compounds previously reported to possess antiviral activity, such as fatty acids, sinefungin, prostaglandins and glucosamine, did not show a significant inhibition of viral cytopathic effects in our assay. Many of these agents proved quite cytotoxic but none showed antiviral activity at non-toxic concentrations. It is not excluded that some of the compounds listed in Table 2 and devoid of significant antiherpes activity could exhibit an antiviral effect if assayed in a different system or with a different virus.

The compounds which we found active against HSV-1 in our screening system are listed in Table 3. Some of them, such as aabomycin, actinobolin, aquayamycin, formycin A and P3355, showed protection at concentrations that clearly blocked protein synthesis in uninfected cells. Others showed a rather interesting selectivity since they were active at concentrations that were not harmful to the control cells (Table 3).

Figures 3 and 4 show the effect of amicetin, megalomycin C, laspartomycin, atropine, carrageenan, tetracenomycin, suramin, and 9-methylstreptimidone on pro-

TABLE 2
Compounds which proved inactive against HSV-1 in our screening system

Name	Range of concentrate	tions tested	TOX 50	
A 19009	10 - 200	μg/ml	> 200	μg/ml
AB 74	0.1 - 500	μg/ml	100	μg/ml
Aceclidine	10 - 400	μg/ml	300 - 400	μg/ml
Acetomycin	10 - 200	μg/ml	10 - 20	μg/ml
Aconitine	5 - 100	μg/ml	25	μg/ml
Acromycin	10 - 200	μg/ml	<20	μg/ml
Actinonin	10 - 200	μg/ml	<u>-</u>	7.0
Adenomycin	10 - 200	μg/ml	> 200	μg/ml
Adonitol	10 - 200	μg/ml	> 200	μg/ml
ADP-S	0.1 - 1	mM	>1	mM
Ajmaline	10 - 200	μg/ml	_	
Aldgamycin	10 - 200	μg/ml	> 200	μg/ml
Allopurinol	10 - 200	μg/ml	100	μg/ml
Althiomycin	10 - 200	μg/ml		7.0
D-Altrose	10 - 200	μg/ml	> 200	μg/mi
Amiclenomycin	10 - 200	μg/ml	200	μg/ml
4-Amino-4-deoxytrehalose	10 - 400	μg/ml	> 400	μg/ml
o-Aminophenyl	10 - 200	μg/ml	> 200	μg/ml
β-D-glucuronide		P.B	,	PO:
Amipurimycin	0.1 - 100	μg/ml	1	μg/ml
Amphetamine sulfate	10 - 200	μg/ml	- -	P-0
Amphotericin B	10 - 200	μg/ml	25	μg/ml
AMP-S	0.1 - 1	mM	>1	mM
Angolamycin	0.1 - 100	μg/ml	100	μg/ml
Anguidine	10 - 200	μg/ml	<10	μg/ml
Angustimycin A	5 - 200	μg/ml	> 200	μg/ml
Anhydroerythromycin A	10 - 100	μg/ml	> 200	μg/ml
Anisomycin	10 - 200	μg/ml	_	F-6
Antiamoebin	10 - 200	μg/ml	20 - 50	μg/ml
Apramycin	10 - 200	μg/ml	> 200	μg/ml
p-Arabitol	10 - 200	μg/ml	> 200	μg/ml
Arachidonic acid	10 - 200	μg/mi	50 - 100	μg/ml
Arecoline	10 - 200	μg/ml	_	
Argininosuccinic acid	10 - 200	μg/ml	> 200	μg/ml
DL-Arterenol	10 - 200	μg/ml	75	μg/ml
Aspartocin	10 - 200	μg/ml	_	1.0
ATP-S	0.01 - 1	mM	>1	mM
Aureofungin	10 - 200	μg/ml	<10	μg/ml
Axenomycin B	1 - 100	μg/ml	> 100	μg/ml
Axenomycin D	0.1 - 200	μg/ml	0.5	μg/ml
Baciphelacin	0.1 - 100	μg/ml	2	μg/ml
Bacitracin	10 - 200	μg/ml	-	
Berberine hydrochloride	10 - 200	μg/ml	<10	μg/ml
Berninamycin	10 - 200	μg/ml	_	-
Betulin	10 - 200	μg/ml	_	
Bicyclomycin	2 - 200	μg/ml	> 200	μg/ml
Bleomycin A ₂	0.1 - 200	μg/ml	> 200	μg/ml

TABLE 2
Compounds which proved inactive against HSV-1 in our screening system

Name	Range of concentrations tested	TOX 50
Boldine	10 - 200 μg/ml	<u>-</u>
Borneol	10 - 200 μg/ml	_
Brucine sulfate	10 – 200 μg/ml	-
BU-1709 A ₁	0.1 - 100 μg/ml	> 100 μg/ml
BU-1709 A ₂	0.1 - 100 μg/ml	> 100 µg/ml
BU-1709 E ₁	0.1 - 100 μg/ml	10 μg/ml
Caffeine	10 - 200 μg/ml	50 - 100 μg/ml
Endo-3-bromo-D-camphor	10 – 200 μg/ml	50 - 100 μg/ml
Carboxymethylcellulose	10 - 200 μg/ml	-
Cardiolipin	8 – 160 μg/ml	> 160 μg/ml
Carminomycin	1 – 200 μg/ml	<1 μg/ml
β-Carotene	10 - 200 μg/ml	> 200 µg/ml
Celesticetin	1 - 200 μg/ml	50 μg/ml
α-Cellulose	10 - 200 μg/ml	-
Cellulose phosphate	10 - 200 μg/ml	_
Ceramides from cerebrosides	10 - 200 μg/ml	> 200 µg/ml
Ceramides from sphingomyelin	10 - 200 μg/ml	200 μg/ml
Chaetocin	10 – 200 μg/ml	200 μg/ml
Chalcomycin	10 - 200 μg/ml	
Chartreusin	10 - 200 μg/ml	_
Chitin	10 - 200 μg/ml	> 200 μg/ml
Chlorogenic acid	10 – 200 μg/ml	200 μg/ IIII
Chlorothricin	10 = 200 μg/ml	- 100 μg/ml
Chlorotetracycline	0.1 - 10 mM	0.1 mM
Cholesterol arachidate	10 - 200 μg/ml	150 µg/ml
Cholesterol hemisuccinate	10 - 200 μg/ml	> 200 μg/ml
Cholesterol methylcarbonate	10 - 200 μg/ml	$> 200 \mu \text{g/m}$
Chondroitin sulfate type C	10 - 200 μg/ml	> 200 μg/ IIII
Cinchonidine	10 - 200 μg/ml	-
	F-0	- > 100 μg/ml
Clindamycin	P.B	
Corticosterone	PO	>10 μg/ml >10 μg/ml
Contisone	. 1-0	7-6
Crotonic acid	P-0	
Cyanein	1.0	, ,
Cyclandelate	10 - 400 μg/ml	20 – 100 μg/ml
Cycloheximide	10 – 200 μg/ml	100 μg/ml -
DAN 1701	10 - 200 μg/ml	
Danomycin	1 - 100 μg/ml	> 100 µg/ml
Decoyinin	5 – 200 μg/ml	200 μg/ml
Desdanine	10 – 200 μg/ml	-
Deoxyerythromycin B	10 – 200 μg/ml	- >0.1
Dextomycin A	0.01 - 0.1 mM	>0.1 mM
Digitonin	0.1 - 2 μg/ml	0.15 μg/ml
Dihydroxyantraquinone	10 - 200 μg/ml	-
Dihydroerythromycin A	10 – 200 μg/ml	-
1,3-Dipalmitin	10 – 200 μg/ml	50 - 100 μg/ml
Diumycin A	0.1 -1000 μg/ml	1000 μg/ml

ΓABLE 2 Compounds which proved inactive against HSV-1 in our screening system

Name		nge of	1	TOX 50	
	con	centrati	ons tested		
Diumycin B	0.1	-1000	μg/ml	>1000	μg/ml
Doxycycline	0.01	- 0.1	mM	>0.1	mM
Efrotomycin	5	- 200	µg/ml	20	μg/ml
Elaiofilin	10	- 200	μg/ml	<10	μg/ml
Enduracidin	10	- 200	μg/ml	-	
Enterocin	2	- 100	μg/ml	> 100	μg/ml
Ergosterol	10	- 200	µg/ml	> 200	μg/mi
Ergotamine tartrate	10	- 200	µg/ml	-	
Eritronolide B	10	- 200	μg/mi	-	
Erythromycin A	10	- 200	μg/ml	> 200	μg/ml
Erythromycin B	10	- 200	μg/ml	> 200	μg/ml
Erucic acid	10	- 200	μg/ml	75	μg/ml
β-Escin	10	- 200	μg/ml	-	
Esculin	10	- 200	μg/ml	-	
Everninomycin C	10	- 200	μg/ml	200	μg/ml
Flammulin	5	- 200	μg/ml	30	μg/ml
Formycins	5	- 200	μg/ml	<5	μg/ml
Fortimycin A	5	- 200	μg/ml	> 200	μg/ml
Fosfomycin	10	- 200	μg/ml	200	μg/ml
Fumagillin	5	- 200	μg/ml	20	μg/ml
Funiculosin	0.1	- 200	μg/ml	0.5	μg/ml
Fusidic acid	10	- 200	μg/ml	_	
G-52	1	- 200	μg/ml	> 200	μg/ml
G-418	0.1	- 200	µg/ml	> 200	μg/ml
Gangliosides	10	- 200	μg/ml	> 200	μg/ml
Gardimycin	5	- 200	μg/ml	> 200	µg∕ml
Gelonin	0.1	- 10	μg/ml	0.5 - 1	μg/ml
Gossypol	0.00	1- 0.1	mM	0.0	1 m M
D-Glucosamine	0.1	- 20	mM		5 mM
D-Glucuronic acid	10	- 200	μg/ml	200	μg/ml
Griseofulvin	10	- 200	μg/ml	75	μg/ml
Griseoviridin	10	- 200	μg/ml	-	
7-Methylguanosine	50 μN	1- 5	mM	>5	mM
7 ^m -GTP	50 μN	1 - 5	mM	>5	mM
Herbicidin A	1	- 100	μg/ml	100	μg/ml
Hexamethylene tetraamine	10	- 200	μg/ml	-	
Hikizimycin	10	- 200	μg/ml	-	
Hydrastine	10	- 400	μg/ml	10 - 20	μg/ml
8-Hydroxyquinoline-glucuronide	10	- 200	μg/ml	_	
6-Hydroxyuridine	10	- 200	μg/ml	200	µg/ml
Isoniazid	10	- 200	μg/ml		
JI-20A	1	- 100	μg/ml	> 100	μg/ml
JI-20B	1	- 100	μg/ml	> 100	μg/ml
Josamycin	10	- 200	μg/ml	_	
Kirromycin	10	- 100	μg/ml	-	
Kitasamycins	5	- 200	μg/ml	20	μg/ml
Largomycin F-II	0.1	- 200	μg/ml	5	μg/ml

TABLE 2
Compounds which proved inactive against HSV-1 in our screening system

Name	Rang			TOX 50	
	concentrations tested				
Lincomycin	1	- 100	μg/ml	> 100	μg/ml
Linoleic acid	10	- 200	μg/ml	100 - 200	μg/ml
Linolenyl alcohol	10	- 200	µg/ml	25	μg/ml
Linoleyl alcohol	10	- 200	μg/ml	25	μg/ml
Lividomycin A	10	- 200	µg/ml	200	μg/ml
Lividomycin B	10	- 200	μg/ml	200	μg/ml
LL-BM-123α	10	- 200	μg/ml	100	μg/ml
α-L-Lysophosphatidylcholine dodecyl	10	- 200	μg/ml	150	μg/ml
M-4365 A ₁	10	- 200	μg/ml	_	
Melezitose	10	- 200	μg/ml	_	
Metixene chlorohydrate	10	- 200	μg/ml	_	
Metronidazole	10	- 200	µg/ml	-	
6-MFA	0.1	-1500	μg/ml	250	μg/ml
Minimycin	0.1	-1000	μg/ml	100	μg/ml
Mitogillin	0.1	- 1	mM	1	mM
Monoolein	10	- 200	μg/ml	75	μg/ml
Monopalmitin	10	- 200	μg/ml	150	μg/ml
Myomycin	10	- 200	μg/ml	> 200	μg/ml
Nebramycin	10	- 200	μg/ml	> 200	μg/ml
Negamycin	0.1	- 200	μg/ml	20	μg/ml
Neohesperidine dihydrochalcone	10	- 200	μg/ml	_	
Neospiramycin	10	- 200	μg/ml	_	
Nicotine	10	- 200	μg/ml	_	
Nifitricin A	10	- 200	μg/ml	20	μg/ml
Nifitricin B	10	- 200	μg/ml	<10	μg/ml
Nikkomycin	10	- 200	μg/ml	> 200	μg/ml
Nisaplin	10	- 200	i.u./ml	_	
Nisin	10	- 200	μg/ml	> 200	μg/ml
2-Nitroimidazole	10	- 200	μg/ml	_	
Nocardicin	2	- 100	μg/ml	> 100	μg/ml
Nogalamycin	10	- 200	μg/ml	<10	μg/ml
Novobiocin	10	- 200	μg/ml	10	μg/ml
Nucleocidin	10	- 100	μg/ml	75	μg/ml
Oleandomycin	10	- 200	μg/ml	200	μg/ml
Ouabain	1	- 200	μg/ml	<1	μg/ml
Oudenone	10	- 200	μg/ml	200	μg/ml
Oxamicetin	0.1	- 500	μg/ml	500	μg/ml
Oxytetracycline	0.1	- 10	mM	0.1	mM
Paromomycin sulfate	10	- 200	μg/ml	_	
Pentazocine	10	- 200	μg/ml	_	
α-L-Phosphatidylcholine dilauroyl	10	- 200	μg/ml	> 200	μg/ml
α-L-Phosphatidylethanolamine	10	- 200	μg/ml	> 200	μg/ml
α-L-Phosphatidyl L-serine	10	- 200	μg/ml	> 200	μg/ml
Phospho L-arginine	10	- 200	μg/ml	> 200	μg/ml
Pikromycin	0.25	- 100	μg/ml	1 - 10	μg/ml
_,	10	200		200	
Pipemidic acid	10	- 200	μg∕ml	200	μg/ml

TABLE 2
Compounds which proved inactive against HSV-1 in our screening system

Name	Range of concentrations to	TOX 50
Platenomycin A ₁	10 – 200 με	g/ml –
Platomycin A	0.1 - 100 με	g/ml > 100 μg/ml
Platomycin B	0.1 – 100 με	g/ml > 100 μg/ml
Pokeweed antiviral protein	0.1 - 100 με	g/ml 50 μg/ml
Polygalacturonic acid	10 – 200 με	g/mi –
Poly-L-glutamic acid	10 – 200 με	g/ml –
Polioxin complex	10 – 200 με	g/ml 150 μg/ml
Polymyxin B	10 – 200 μ <u>g</u>	g/ml –
Potato starch	10 - 200 μg	g/ml –
Prostaglandin A ₁	0.5 - 4 μ _ξ	g/mi >4 μg/ml
Prostaglandin E ₁	0.5 - 4 μ _ξ	g/ml 1,5 μg/ml
Pyrazofurin	1 – 200 μ ₂	g/ml 100 μg/ml
Quinine hydrochloride	10 - 200 μ ₂	g/ml -
Raffinose	10 - 200 μ ₂	g/ml –
Reserpine	10 - 200 μ ₂	g/ml –
Restrictocin	0.1 - 1 m	nM >1 mM
Retinal (trans)	$10 - 200 \mu$	g/ml 100 µg/ml
Retinol (trans)	10 - 200 μ	g/ml 100 µg/ml
α-Sarcin	5 – 100 μ	g/ml <5 μg/ml
Sarkomycin	10 - 200 μ	g/ml –
Seldomycin F-1	0.1 - 100 μ	g/ml > 100 µg/ml
Seldomycin F-2	0.1 - 100 μ	g/ml 100 µg/ml
Showdomycin	10 – 200 μ	g/ml -
Sinefungin	10 - 200 μ	g/ml 100 µg/ml
Siomycin A	10 – 200 μ	g/ml -
Sodium palmitate	10 – 200 μ	g/ml 50 - 100 µg/ml
Sordarin	10 - 200 μ	g/ml 200 µg/ml
(-)-Sparteine sulfate	10 – 200 μ	g/ml -
Spectinomycin	10 – 200 μ	g/ml -
Spiramycin III	1 – 100 μ	g/ml $> 100 \mu g/ml$
Steffimycin B	10 - 200 μ	g/ml -
Streptovitacin A	10 – 200 μ	g/ml -
Talaron	0.1 - 100 μ	g/ml 5 μg/ml
Taurocholic acid	10 – 200 μ	g/ml $> 200 \mu g/ml$
Telomycin	10 - 200 μ	g/ml -
Termorubin	10 – 200 μ	ig/ml 100 - 200 μg/ml
Tetracycline	0.1 - 10 m	nM 5 mM
D-Tetranoline	10 - 200 μ	g/ml -
Thiocillin II	0.25 - 100 μ	.g/ml 0.25 μg/ml
Thiocillin III	0.1 - 100 μ	g/ml 0.25 μg/ml
Thiopeptin A ₁	10 – 200 μ	ıg/ml –
Thiopeptin B	10 – 200 μ	ıg/ml –
Thioproline	10 - 200 μ	ıg/ml 200 μg/ml
4-Trehalosamine	10 - 200 µ	ıg/ml 200 μg/ml
Trichomycin	10 - 200 µ	ıg/ml 10 μg/ml
Trimethoprim	25 - 300 µ	ıg/ml 50 – 100 μg/ml
TSK-VI	10 - 200 µ	ıg/ml –

TABLE 2
Compounds which proved inactive against HSV-I in our screening system

Name	Range of concentrations tested	TOX 50	
Tsushimycin	10 - 200 μg/ml	_	
Turimycin h complex	10 - 200 μg/ml	-	
Tuberactin	10 - 200 μg/ml	< 10 μg/ml	
Tubercidin	10 - 200 μg/ml	200 μg/ml	
Undecylenic acid	10 - 200 μg/ml	_	
Venturicidin	0.1 - 100 μg/ml	0.75 µg/ml	
Verdamycin	10 - 200 μg/ml	$> 200 \mu \text{g/ml}$	
Vernamycin A	10 - 200 μg/ml	-	
Vincamine	10 - 200 μg/ml	> 200 µg/ml	
Vindoline	10 - 200 μg/ml	=	
Virginiamycin	10 - 200 μg/ml	_	
Viridogrisein	10 - 200 μg/ml	_	
Xerosin	10 - 200 μg/ml	> 200 µg/ml	
Ya-56-X	10 - 200 μg/ml	200 μg/ml	
Ya-56-Y	10 - 200 μg/ml	200 μg/ml	
Yohimbine hydrochloride	10 - 200 μg/ml	-	

TOX 50: Concentration of the compound that caused a 50% inhibition of protein synthesis in uninfected HeLa cells after 48 h incubation.

Note: For details of the structural formulae and origin of the antibiotics listed, the reader is referred to Refs. 12 and 15.

TABLE 3

Compounds which showed antiherpetic activity in our screening system

Name	TOX :	50	CPE	50
Aabomycin A	<15	μМ	23	μМ
Actinobolin	167	μM	67	μΜ
Amicetin	78	μ M	16	μΜ
Aquayamycin	43	μ M	51	μΜ
Atropine	>1.3	3 mM	0.:	5 mM
Bamicetin	>331	μ M	25	μΜ
Carrageenan	>200	μg/ml	<10	μg/ml
Formycin A	54	μ M	217	μ M
Laspartomycin	>110	μ M	44	μΜ
Megalomycin C	100	μ M	70	μ M
Pleuromutilin	>530	μ M	40	μ M
P3355	36	μM	216	μ M
Sodium alginate	>200	μg/mi	75	μg/ml
9-Methyl-streptimidone	195	μ M	49	μ M
Suramin	>140	μ M	17	μ M
Tetracenomycin C	212	μΜ	32	μΜ
Trypan blue	_		15	μΜ

CPE 50 and TOX 50 are as described in the footnote to Table 1.

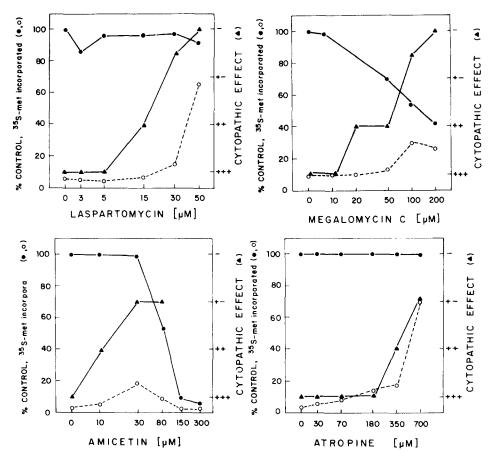


Fig. 3. Cytopathic effect in HSV-1-infected HeLa cells, 48 h p.i. Viral CPE and protein synthesis were determined as indicated in the legend to Fig. 1.

tein synthesis in uninfected control cells and on the cytopathic effects of HSV-1 for Hela cells, following the assay methods described in Materials and Methods. Again, for several compounds, i.e., amicetin, laspartomycin, carrageenan and suramin, a reduction of viral cytopathogenicity is observed at concentrations not affecting cellular protein synthesis.

Antiviral spectrum of the new antiherpes agents

Preliminary studies on the antiviral spectrum of some of the new antiherpes agents have begun. Table 4 illustrates that these compounds acted on both DNA and RNA viruses, including HSV-1, VSV (vesicular stomatitis virus), SFV (Semliki Forest virus), polio and EMC (encephalomyocarditis) virus. Some compounds were active against poliovirus but inactive against EMC virus and vice versa. More detailed studies on the antiviral spectrum of these compounds are being carried out at present. The molecular mechanism of action of these compounds is also subject to further study.

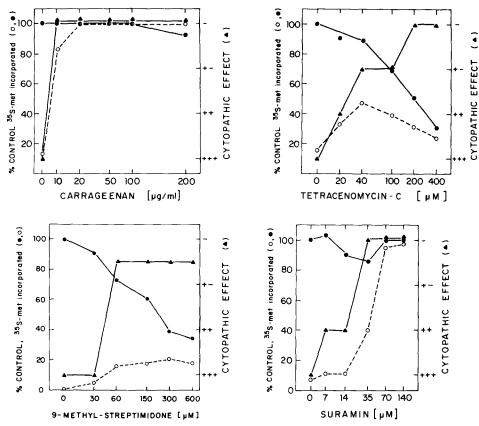


Fig. 4. Cytopathic effect in HSV-1-infected HeLa cells, 48 h p.i. Viral CPE and protein synthesis were determined as indicated in the legend to Fig. 1.

TABLE 4
Antiviral spectrum of some compounds

Compound	HSV-1	VSV	SFV	polio	EMC	
Actinobolin	+	+	+	+	+	
Amicetin	+	+	+	+	+	
Atropine	+	+	+	+	_	
Carrageenan	+	-	+	_	+	
Formycin A	+	+	+	_	_	
Laspartomycin	+	nd	+	_	nd	
Megalomycin C	+	+	+	_	_	
Pleuromutilin	+	+	_	_	_	
Suramin	+	+	+	_	+	
Tetracenomycin C	+	+	+	+	+	

^{+,} antiviral effect; -, no effect; nd, not determined.

Acknowledgements

The expert technical assistance of M.J. Norte, M.E. González and M.A. Ramos is gratefully acknowledged. This work was supported by grants from CAICYT and Plan Concertado de Investigación.

References

- 1 Bauer, D.J. (1977) The Specific Treatment of Virus Diseases. University Park Press, Baltimore, MD.
- 2 Bauer, D.J. (1980) Laboratory studies on acyclovir. In: Developments in Antiviral Therapy. Collier, L.H. and Oxford, J. (eds.), Academic Press, London, pp. 43-51.
- 3 Chandra, P., Ebener, U. and Gericke, D. (1979) Molecular mechanisms for control of RNA tumor viruses. In: Antiviral Mechanisms in the Control of Neoplasia. Chandra, P. (ed.), Plenum Press, New York, NY, pp. 523-537.
- 4 Darby, G., Field, H.J. and Salisbury, S.A. (1981) Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature 289, 81-83.
- 5 De Clercq, E. (1981) Nucleoside analogues as antiviral agents. Acta Microbiol. Acad. Sci. Hung. 28, 289-306.
- 6 De Clercq, E. (1982) Specific targets for antiviral drugs. Biochem. J. 205, 1-13.
- De Clercq, E., Descamps, J., De Somer, P., Barr, P.J., Jones, A.S. and Walker, R.T. (1979) (E)-5-(2-Bromovinyl)-2'-deoxyuridine: a potent and selective anti-herpes agent. Proc. Natl. Acad. Sci. U.S.A. 76, 2947-2951.
- 8 Field, H.J. (1982) Development of clinical resistance to acyclovir in herpes simplex virus-infected mice receiving oral therapy. Antimicrob. Agents Chemother. 21, 744-752.
- 9 Goswami, B.B., Crea, R., Van Boom, J.H. and Sharma, O.K. (1982) 2',5'-linked oligo(adenylic acid) and its analogs. A new class of inhibitors of mRNA methylation. J. Biol. Chem. 257, 6867-6870.
- 10 Grunert, R.R. (1979) Search for antiviral agents. Annu. Rev. Microbiol. 33, 335-353.
- Hillyard, I.W. (1980) The preclinical toxicology and safety of ribavirin. In: Ribavirin, a Broad Spectrum Antiviral Agent. Smith, R.A. and Kirkpatrick, W. (eds.), Academic Press, London, pp. 59-71.
- 12 Korzybski, T., Kowszyk-Gindifer, Z. and Kurylowicz, W. (1978) Antibiotics: Origin, Nature and Properties. American Society for Microbiology, Washington, DC.
- 13 Parris, D.S. and Harrington, J.E. (1982) Herpes simplex virus variants resistant to high concentrations of acyclovir exist in clinical isolates. Antimicrob. Agents Chemother. 22, 71-77.
- 14 The Merck Index (1976) Windholz, M. (ed.), Merck & Co., Rahway, NJ.
- 15 Umezawa, H. (1978) Index of Antibiotics from Actinomycetes. Japan Scientific Societies Press, Tokyo, and University Park Press, Baltimore, MD.